

Project Acronym: CATALYST

Project Full Title: Collective Applied Intelligence and Analytics for Social Innovation

Grant Agreement: 6611188

Project Duration: 24 months (Oct. 2013 - Sept. 2015)

D3.2 Social network interconnection layer

Deliverable Status: Final
File Name: CATALYST_ D3.2.pdf
Due Date: May 2014 (M8)
Submission Date: June 2014 (M9)
Dissemination Level: Public
Task Leader: Imagination for People

This project has received funding from the European Union’s Seventh Framework Programme for research,

technological development and demonstration under grant agreement n°6611188

D3.2- Social network interconnection layer May 2014 Imagination for People
The CATALYST project has received funding from the European Union’s Seventh Framework Programme for research,
technological development and demonstration under grant agreement n°6611188

Page 2 of 14

The CATALYST project consortium is composed of:

SO Sigma Orionis France

I4P Imagination for People France

OU The Open University United Kingdom

UZH University of Zurich Switzerland

EN Euclid Network United Kingdom

CSCP Collaborating Centre on Sustainable Consumption and Production Germany

Purpose Purpose Europe United Kingdom

Wikitalia Wikitalia Italy

Disclaimer

All intellectual property rights are owned by the CATALYST consortium members and are protected by the applicable laws. Except where otherwise

specified, all document contents are: “© CATALYST Project - All rights reserved”. Reproduction is not authorised without prior written agreement.

All CATALYST consortium members have agreed to full publication of this document. The commercial use of any information contained in this

document may require a license from the owner of that information.

All CATALYST consortium members are also committed to publish accurate and up to date information and take the greatest care to do so. However,

the CATALYST consortium members cannot accept liability for any inaccuracies or omissions nor do they accept liability for any direct, indirect,

special, consequential or other losses or damages of any kind arising out of the use of this information.

D3.2- Social network interconnection layer May 2014 Imagination for People
The CATALYST project has received funding from the European Union’s Seventh Framework Programme for research,
technological development and demonstration under grant agreement n°6611188

Page 3 of 14

Revision Control

Version Author Date Status

0.1 Benoit Gregoire (I4P) June 6, 2014 Draft

1.0 Stéphanie Albiéro (Sigma) June 11, 2014 Quality check and submission to the EC

D3.2- Social network interconnection layer May 2014 Imagination for People
The CATALYST project has received funding from the European Union’s Seventh Framework Programme for research,
technological development and demonstration under grant agreement n°6611188

Page 4 of 14

Executive summary

The present document is a deliverable of the CATALYST project, funded by the European Commission’s Directorate-

General for Communications Networks, Content & Technology (DG CONNECT), under its 7th EU Framework Program

for Research and Technological Development (FP7).

This deliverable is an outcome of Task 3.2. The main goal of this task was to develop the technical framework

necessary to create deliberation groups that span more than one forum or social network.

This includes the software necessary for conversations to flow bi-directionally across networks. It also includes

performing the necessary format adaptation for the resulting messages to be both technically compatible (ex: HTML

or not) and culturally compatible (ex: length, management of hyperlinks) with the destination networks.

The main features include the ability to automatically import posts, comments and messages from other social media

platforms; the ability to post back to the original platform from within Assembl; giving posts a permanent URL so they

can be referred to across the web; and recomposing posts from a social network into threads, whether the original

platform allowed it or not. The system has been tested successfully through email and mailing lists, which is believed

to be the hardest case. It is anticipated that further cases are comparatively simpler.

D3.2- Social network interconnection layer May 2014 Imagination for People
The CATALYST project has received funding from the European Union’s Seventh Framework Programme for research,
technological development and demonstration under grant agreement n°6611188

Page 5 of 14

Table of Contents

Executive summary .. 4

Table of Contents .. 5

1. The Assembl messaging abstraction layer .. 6

2. High Level Architecture .. 7
2.1 PostSource class and its derivatives: communications with remote servers .. 8
2.2 The Post class and its derivatives: managing format differences ... 9
2.3 The AgentProfile class and its derivatives: management of identities ... 10

3. Conclusion and Future direction .. 12

List of Tables and Figures ... 14

D3.2- Social network interconnection layer May 2014 Imagination for People
The CATALYST project has received funding from the European Union’s Seventh Framework Programme for research,
technological development and demonstration under grant agreement n°6611188

Page 6 of 14

1. The Assembl messaging abstraction layer

The Assembl messaging abstraction layer is a core piece of the Assembl architecture. It is designed to enable two-way

interactions with any messaging platform or social network that allows chronological discussions between individuals

to take place. It presents these messages in a uniform interface within Assembl and will eventually make them

available to the other CATALYST tools.

The activities include:

 Automatically importing posts, comments or messages from external social media platforms;

 Posting back to external platforms from within Assembl;

 Giving posts a permanent, stable URL if they do not already have one so they can be referred to across the

web and harvested from using other catalyst tools;

 Recomposing posts from social networks (reply relationships) to allow for threading, whether the original

platform supports limited threading levels or no threads at all.

D3.2- Social network interconnection layer May 2014 Imagination for People
The CATALYST project has received funding from the European Union’s Seventh Framework Programme for research,
technological development and demonstration under grant agreement n°6611188

Page 7 of 14

2. High Level Architecture

Figure 1: Assembl simplified diagram (processing of posts)

While the Assembl frontend has knowledge of the different types of Posts, dealing with the difference is largely a

backend concern.

D3.2- Social network interconnection layer May 2014 Imagination for People
The CATALYST project has received funding from the European Union’s Seventh Framework Programme for research,
technological development and demonstration under grant agreement n°6611188

Page 8 of 14

2.1 PostSource class and its derivatives: communications with remote servers

These classes are mainly concerned with supporting the importing of chronological Posts from multiple sources. Their

activities include:

Managing the information necessary to make a source available to the discussion

For example, in the case of IMAP servers (that manage emails) the IMAPMailbox class stores the address and directory

where the messages can be found, and associates it with a Discussion. A given Discussion can receive Posts from

more than one PostSource.

Performing the interactions necessary to retrieve posts from the source server

The class instances for a specific server type need to know how to speak the API or protocol(s) supported by that

server. So far the following have been implemented:

 IMAP servers, with or without encryption. IMAP servers are the most common means of accessing

emails. Using an IMAP server allows Assembl to access any system and allows users to subscribe to an email

to receive all messages.

 Mailing lists. This allows Assembl to be aware of the semantics of a mailing list, namely that every user can be

reached through a single email destination and that no duplicate messages should be sent there.

 Mailboxes stored in the maildir format. This allows users to access past discussions for harvesting purposes.

 Messages posted directly on the Assembl web interface

Starting with emails may seem surprising in a “social network interconnection layer”, but there are two important

reasons to start there.

The first reason is simply that we already have multiple communities using mailing lists. Migrating these communities

to Assembl with the least disruption possible is the goal.

The second reason is that mailing lists are clearly the most complex of chronological discussions:

 Every message can have a different encoding

 Every message can have a different natural language

 A single message can have multiple formats (HTML and plain text)

 Messages can have attachments

 Message threads can be unlimited in depth, and the reply relationships can be represented in multiple ways

 There is enormous variability in message length in practice (social network comments are typically more

uniform within a single network)

 Messages have a subject separate from their body text

Any abstraction layer that can deal with such variability should easily deal with the simpler and more homogenous

messages from social networks (one API, relatively uniform length, very limited HTML support, single format, limited

threading level).

Performing efficient pooling of the original server

It is necessary to receive new messages efficiently (placing minimal stress on the involved servers). This means

requesting only messages not already imported where the server supports this function, and not pooling too often.

It is also necessary, however to receive messages in a timely fashion (as close to real-time as possible).

D3.2- Social network interconnection layer May 2014 Imagination for People
The CATALYST project has received funding from the European Union’s Seventh Framework Programme for research,
technological development and demonstration under grant agreement n°6611188

Page 9 of 14

While not the core subject of this report, it is important to understand that Assembl maintains a real-time socket to all

of its open clients on the web, allowing it to transmit real-time updates, in a manner similar to Google docs (one can

see what changes other users have made without reloading the page). This includes messages.

To reach this performance requirement, there are two situations must be avoided:

 We cannot trigger a verification of every source every time a user load the interface. Not only would this

create undue stress on the remote server (possibly leading to blacklisting of the Catalyst tool), but if there are

indeed messages to process, it would delay the response to the user (importing many messages may take

several seconds).

 We cannot wait for someone to load the interface to import new messages, as this would cause everyone to

receive messages after a possibly large delay, and all in a large batch instead of continuously.

To solve these two problems, the task of managing the import operations of the PostSources is implemented using a

Celery distributed task queue (http://www.celeryproject.org/). When a message is imported, the source subsequently

communicates with a 0MQ (http://zeromq.org/) message queue, which notifies the clients (the end user’s browsers)

immediately.

Sending a message or notification back to the source

It is important to be able to either post a message back to the original conversation (not always possible, for example

Facebook does not allow more than one level of replies), or send a personal notification. The most common use case

is when a user responds to a message originating from a different system. We want the original author to be notified.

2.2 The Post class and its derivatives: managing format differences

These classes are mostly responsible for managing the differences in format and capabilities of the different Post

types.

Making the format adaptations required to represent the post in a uniform format.

This includes:

1. Converting character encoding

2. Choosing between formats if there are either multiple versions of the base format, or even multiple

representations sent at the same time (example: a single email can contain both a plain text representation,

and a HTML one)

Avoiding duplicates

The type of harvesting Assembl performs could very easily create infinite loops, in which Assembl retrieves message A

on server 1, sends a reply as message B back to server 1, and then receives message B from server 1 (which is

expected). If Assembl does not detect that the message is the same the user sent, despite any format shifting that

may have occurred, there will be a duplicate message posted to the conversation.

Worse, if Assembl is configured to mirror every message on every server, an infinite loop is created.

Inferring response relationships

Assembl can recompose the message thread (who replied to who), in order to use it to display a threaded view (the

only efficient view for harvesting, without it, it is very difficult to sort out who is replying to who):

http://www.celeryproject.org/
http://zeromq.org/

D3.2- Social network interconnection layer May 2014 Imagination for People
The CATALYST project has received funding from the European Union’s Seventh Framework Programme for research,
technological development and demonstration under grant agreement n°6611188

Page 10 of 14

Figure 2: Threaded message view in Assembl

In the future we will use this function to generate notifications of replies across networks (sometimes this will be the

only interaction allowed by social networks).

2.3 The AgentProfile class and its derivatives: management of identities

Having unique identities is a difficult problem and has become a practical concern for Assembl. The program needs to

recognise that a person logged in to Assembl is the same person no matter if he signs up with a Google account,

through Facebook, or via an email.

In practice this requires architecting the system is such a way that a user can claim and verify multiple accounts (such

as a email account), and have them linked to a unique profile. This is rare, but not unique:

D3.2- Social network interconnection layer May 2014 Imagination for People
The CATALYST project has received funding from the European Union’s Seventh Framework Programme for research,
technological development and demonstration under grant agreement n°6611188

Page 11 of 14

Figure 3: Account merging

What is unique is that Assembl can do this merge AFTER the first messages have been received. If a user adds an

email account, any message sent previously from that account will be shown as belonging to the user.

D3.2- Social network interconnection layer May 2014 Imagination for People
The CATALYST project has received funding from the European Union’s Seventh Framework Programme for research,
technological development and demonstration under grant agreement n°6611188

Page 12 of 14

3. Conclusion and Future direction

As outlined in task 3.2, we started with writing the abstractions necessary to make messages flow bi-

directionally. This work has been successful.

 Participants can post messages via email, and respond through the web and vice-versa

 Messages flow in real time (Participants on the web see messages arrive without reloading their page).

 Messages (even those submitted via) receive a URL and can be referred to on the Web.

 Threading and response relationships are kept despite network shifting (ex: someone responding by email to

a message from the web and vice-versa).

 This technical framework has been tested through connections with mailing lists.

o This enables users to participate in the debate through an interface they are already comfortable

with (Gmail for example) if they do not wish to migrate to Assembl itself. Existing communities who

may be using email already are able to keep the same habits but at the same time, thus increasing

the impact of their contributions.

As planned in task 3.2 the transformation work is still in its infancy at this stage. So far:

 Assembl can transform a plain text message in a representation suitable for the web (dealing with line-

breaks, and other plain text formatting)

 Assembl can sanitise HTML-only emails to display them in the interface.

 Assembl can send a web message back to a mailing list.

The features outlined in this document are for the most part difficult to show visually. Most of the code involved in

the functionalities outlined in this document can be found in the assembl/assembl/models directory.

Development on Assembl is completely open, and activity can be followed here:

 Code browser: https://github.com/ImaginationForPeople/assembl

 Commit history: https://github.com/ImaginationForPeople/assembl/commits/develop

While not usable to demonstrate most of the functionalities in this document (a connection to external network is

required), a sandbox is generally available at the following address: http://assembl.coeus.ca/sandbox/ to play with the

interface (anyone can create an account).

 If you open an account, you can see the real-time update feature in action by opening a second browser

window on the discussion, and moving an idea or posting a message.

Future directions

Our original hypothesis that platform balkanization is a problem has not been invalidated in any way, and receiving all

messages to organise in a coherent way in Assembl does seem to work.

We already learned one lesson however: even in the case of a mailing list, re-sending all messages and syntheses to

everyone on the list is not as useful as anticipated:

 On the one hand, users of one forum do not necessarily want to receive a message or notification every time

something is posted on another forum on the same general subject. The number of messages can differ

widely, and the user may not yet know the participants.

 On the other hand, users DO want to receive a notification when somebody directly responds to them,

regardless of where the response comes from.

 Assembl has the potential to allow users to follow (receive notifications of all replies to a given message) on

more specialised sub-topics within the discussion. This may allow for the building of a critical mass that is

necessary for collective intelligence to emerge on the given subject.

https://github.com/ImaginationForPeople/assembl
https://github.com/ImaginationForPeople/assembl/commits/develop
http://assembl.coeus.ca/sandbox/

D3.2- Social network interconnection layer May 2014 Imagination for People
The CATALYST project has received funding from the European Union’s Seventh Framework Programme for research,
technological development and demonstration under grant agreement n°6611188

Page 13 of 14

Answering these opposing needs requires much more sophisticated and configurable notification logic. For the rest of

this task, we plan to spend more time on this aspect than planned, and less on supporting actual mirroring between

the many social networks.

For example, for Facebook (the elephant in the room of social network interconnection), it has proven surprisingly

difficult to find a compelling use case for bi-directional mirroring. On the other hand, allowing a single synthesis,

visualisation or message to be shared on Facebook, and then having the responses to that post on Facebook be

imported back in Assembl may be a more effective group building tool than simple social sharing. This process would

require notifications for users if other participants react to the post.

In the immediate future, this task will focus on additional work on message transformation, to improve ergonomy in

the web interface and make the outputs of the other tasks (visualisations, syntheses) available in mail notifications.

D3.2- Social network interconnection layer May 2014 Imagination for People
The CATALYST project has received funding from the European Union’s Seventh Framework Programme for research,
technological development and demonstration under grant agreement n°6611188

Page 14 of 14

List of Tables and Figures

Figure 1: Assembl simplified diagram (processing of posts) .. 7
Figure 2: Threaded message view in Assembl ... 10
Figure 3: Account merging ... 11

